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Much of the analysis of instabilities and wave propagation in warm plasmas involves 
perturbative solutions of the Vlasov or collisionless Boltzmann equation. In general, a 
dielectric tensor which describes the response of the plasma to perturbations must be derived. 
A typical derivation involves choosing an equilibrium distribution function which models 
some plasma of interest, calculating a perturbed distribution function by solving a parttai 
differential equation (usually by the method of characteristics), calculating density and current 
moments of this perturbed distribution function. and using these quantities in Maxwell’s 
equations. For many equilibrium models of physical interest, this process can be completely 
carried out analytically. However, even in simple cases, the procedure is tedious-involving 
hundreds or thousands of separate algebraic or calculus operations and is fraught with oppor- 
tunity for error. It will be illustrated here how the symbolic manipulation language 
MACSYMA can be used to automate many of the steps involved in such derivations. By way 
of example, the classic problem of oscillations in a homogeneous, uniformly magnetized 
plasma will be considered. c 1984 Academic Press, Inc. 

1. INTRODUCTION 

A substantial amount of modern plasma kinetic theory involves perturbative 
solutions of the Vlasov or collisionless Boltzmann equation, 

;+v.Vf+; E+ ( F) . VJ-= 0, 

wheref(x, v, 1) is the distribution function of a given plasma species, and E(x, c) and 
B(x, t) are electric and magnetic fields. The quantitiesf, E, and B are self-consistentby 
linked to Maxwell’s equations through the moments for charge and current density, 

In the area of plasma stability theory, the typical procedure is to consider 
oscillatory perturbations about a stationary equilibrium, 
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J-(x, “7 t) 
W, t) 
W, 4 

choosing the equilibrium&(x, v), E,(x), B,( x so as to model the fields and geometry ) 
of a particular plasma configuration of interest. The perturbations satisfy a partial 
differential equation and are usually obtained by means of the method of charac- 
teristics. The final result is typically a complicated transcendental equation for w and 
attention is focused on analyzing the parametric conditions under which the 
perturbations are growing in time, 

Im(w) > 0. (4) 

In the related problem of wave propagation in a plasma, an eikonal form 
[-exp(zk . x)] for th e spatial variation is assumed, a similar derivation is performed, 
and the parametric dependence of k is analyzed. 

Conceptually, either procedure is straightforward; operationally, they are quite 
complex. Much of the “art” of plasma kinetic analysis lies in the ability to choose 
equilibria which, on the one hand, are complicated enough to yield a physically 
interesting model plasma and yet, on the other hand, are sufftciently simple to make 
the various steps leading to the determination of w or k analytically tractable. Even 
when compromises which lead to numerics are required, it is important to proceed 
analytically as far as possible. To elaborate on these points, consider that the pertur- 
bative solution of (1) may be written as 

6$-(x, v, t) = - -c Ii 
v’ x 6B(x’, t) 

m ---v, c I 
. V&f&‘, “‘17 (5) 

where the integral is to be taken along the trajectory (characteristic) defined by 

dx 

dt ’ 

” x B,(x) 1 c . 

(6) 

(7) 

The perturbed distribution Sf( x, v, t) must also satisfy the perturbed Maxwell 
equations, 

V .6E(x, t)=4rxqj ‘d3v 
I I 

’ 
j -lx 

+ 
v’ x 6B(x’, t) 

C 1 
. V’J+‘, “‘), (8) 
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v x &3(x’, t) 1 
,. + 

C 
* Vufo(x’, v’) + +; aqx, t), (4) 

through the moment relations for perturbed plasma current and density. These 
constitute a formidable set of coupled integrodifferential equations. Success in 
dealing with this set of equations stems from a judicious choice of equilibrium, 
extensive use of symmetry properties, and the frequent invocation of physically 
reasonable approximations. This success manifests itself through closed form 
solutions of Eqs. (6) and (7) which, in turn, are sufficiently simple to lead to closed 
form expressions for the integrals in Eqs. (8) and (9). 

From the standpoint of this paper, a key point is that even when a straightforward 
operational procedure exists for going from choice of equilibrium to an analytically 
or numerically tractable expression for w or k, the process typically requires 
hundreds or thousands of individual algebraic and calculus operations. 

In this paper the symbolic manipulation language MACSYMA [ 1 j will be used to 
automate some of the tedious steps in plasma kinetic theory derivations. 
Operationally, this will consist of systematically evaluating a complicated quadruple 
integral and making use of simplifying identities for the various special functions 
which occur. 

To place this particular application of symbolic manipulation in perspective, it is 
useful to consider some of the general ways in which symbolic manipulation can be 
used to advantage. The most common use of symbolic manipulation is for the explicit 
generation and manipulation of complicated mathematical expressions. Typically, a 
complex expression is built up by the actions of replacing simple objects with more 
complex objects, by multiple additions and multiplications, by the performing of 
explicit differentiations or by the application of series expansions for objects within 
the expression. Such mathematical entities, even if very long and complex, can be 
given simple names and manipulated with ease. This has a dual benefit. First, it 
lessens the possibility of error by greatly reducing the amount of human labor 
required. Second, it allows the consideration of many more special cases and 
circumstances than would be possible if these entities had to be manually generated 
and manipulated. 

Once complicated mathematical expressions have been generated, symbolic 
manipulation techniques provide various methods of further processing them. The 
simplest of these is the explicit numerical evaluation of expressions. The benefits here 
are the same as those mentioned previously-the ability to go quickiy to an explicit 
answer with a greatly lessened chance of error. Within the MACSYMA system it is 
also possible to examine expressions graphically. This is extremely useful since it 
allows a quick examination of the parametric “topology” of an expression. It is also 
useful for checking the validity of approximations introduced in the generation of the 
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expression. A more complicated way of using symbolic manipulation to further 
process mathematical expressions is the automatic generation of FORTRAN code for 
the expressions. This allows access to the power of large computer systems and the 
full range of numerical tools which are available to these systems. 

More in the spirit of analysis, symbolic manipulation systems allow the 
nonnumerical simplification of complicated expressions. This is accomplished by 
reorganizing the expressions. Simple examples are the gathering of coefficients and 
the extraction of parts of expressions. In a more fundamental sense, complicated 
expressions are reorganized by the use of pattern matching. That is, a given 
expression is scanned for the occurrence of a subexpression for which a known 
simpler form exists. This simpler form is then substituted into the original expression 
in place of the pattern which was found. The repetitive application of such a 
procedure reorganizes and simplifies the original expression. Examples of this 
procedure are factoring and the use of identities for special functions. In contrast to 
the generation of expressions, the reorganization of expressions through pattern 
matching is not an explicit procedure. Many difficult questions present themselves. 
How should an expression be examined in order to guarantee that imbedded patterns 
will indeed be found? Once a pattern has been found, which of several possibilities 
for a simplifying identity should be invoked? What principles should be used to guide 
the reorganization procedure ? In attacking problems of this class the boundary 
between the techniques of mathematical symbolic manipulation and the techniques of 
artificial intelligence becomes blurred. 

Although the literature on the application of symbolic manipulation techniques to 
the mathematical problems of interest to plasma physics is sparse, the interested 
reader can find [2-91 discussion of the use of MACSYMA to perform the various 
types of symbolic manipulation. In this particular paper, no attempt will be made to 
apply the methodology of symbolic manipulation to a problem of current research 
interest. Instead, the methodology required to solve a classic problem of plasma 
kinetic theory will be illustrated. Specifically, symbolic procedures based on 
MACSYMA will be used to derive elements of the conductivity tensor describing the 
response of a homogeneous, uniformly magnetized plasma to small perturbations. 

In writing this paper, the author was struck by the difficulty of presenting some of 
the ideas in a form which is characteristic of most scientific literature. To some extent 
this is because of the relative newness of the application of symbolic methods to 
problems in physics. More significant, perhaps, is that while the idea of symbolic 
manipulation is easily grasped intuitively, the actual ability to perform such 
manipulations is severely hampered by the arcane structure of symbolic languages. In 
symbolic manipulation, intuition almost always loses to syntax. Therefore, the author 
feels that in order to present symbolic methods which can actually be used, it is 
necessary to go into more detail than would be required to describe a methodology to 
be implemented in FORTRAN or some other familiar language. 

The symbolic methods discussed in this paper were developed to facilitate kinetic 
theory analyses of the complicated magnetic confinement geometry represented by 
the Elmo Bumpy Torus (EBT) [lo]. The symbolic derivation of dielectric tensors 
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specific to the wave propagation and stability properties of the EBT plasma geometry 
will be presented in the future. 

In Section 2, the kinetic theory derivation of the dielectric response of a 
homogeneous plasma in a uniform magnetic field will be reviewed, with emphasis 
placed on detailing the various methematical operations which must be performed. In 
Section 3, some of the general ideas behind the application of symbolic manipulation 
to this type of problem will be presented. In Section 4, the symbolic procedures which 
parallel the analytical derivations detailed in Section 2 will be carried out. In 
Section 5, a summary and discussion of extensions of the methodology will be 
presented. Finally, an Appendix follows which gives detailed listings and discussion 
of the various MACSYMA procedures utilized in the derivation. 

2. ANALYTICAL DERIVATION OF MODEL DIELECTRIC TENSOR 

The derivation of the dielectric tensor for a hot, homogeneous plasma in a uniform 
magnetic field was first presented by Bernstein in 1958 [ 11 j. Literally hundreds of 
plasma analyses have invoked the methodology introduced in this seminal paper. In 
addition to providing a theoretical base for calculations dependent on kinetic effects, 
this derivation helped to clarify the procedure of including finite temperature effects 
in fluid theories by providing an independent check of the tedious perturbative 
procedures required in those calculations. This derivation is now included in standard 
graduate level plasma texts [12, 131 and is a convenient vehicle for illustrating the 
use of symbolic manipulation techniques in plasma kinetic theory. 

Assuming a stationary, homogeneous plasma immersed in a uniform magnetic field 
B =B,,l,, Eq. (1) becomes 

It is easy to show that any function of the form 

where zll = (v: + u;)~‘*, satisfies this equation. Following tradition, specifically 
consider the Maxwellian distribution, 

fo(v) = no (,+$) 3’2 exp [ - -$Y (v”, + ui)]. 

In this case the perturbed distribution function is given by 
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Note that the last term vanishes for this special case of constant magnetic field and 
isotropic equilibrium model. The orbits in a uniform magnetic field may be written as 

v, = v, c0s(u(), r + I+!/) 

v,, = v, sin(o, r + w) 

vz = constant 

x’ - x(t) = + [sin(w,r + I+Y) - sin w] 
c 

4” -y(t) = - 2 [cos(u,z + IfI) - cos y] 
c 

z’ - z(t) = v, r, 

where w, = qBo/mc, r = t’ - t. 
At this point an eikonal form for the perturbation is assumed, 

6E, 6f(x, v, t) - 82, @exp[-iwt + ik,, y(t) + ik,z(t)]. 

The isotropy of the model allows the choice k = k, 1, + k, Ii without 
generality. The explicit form of Sf becomes 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

loss of 

dr[v, cos(w,r + w) SE, + v,sin(o,r + Iv) d-@>, + uz Qzl 
(I) 

X exp -iwt - ik, 3 [cos(~,t + ty) - cos I,Y] + ik,vZz . 1 
I (21) 

c 

Now the r integral may be explicitly evaluated by making use of the identity, 

After some algebra, terms in Eq. (21) may be arranged so that the r integrals are of 
the form 

I 
.O 1 dr e-iwr = -, (23) 
- m --i&j 

where, for reasons of causality, (3 is assumed to have a small positive imaginary part 
to eliminate the contribution at z = -co. The perturbed distribution function 
evaluates to 
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- il(lr/2J 

(aJ2)[6B, + i A!?,] ei+“W 

w-(1+ l)co-kk;vz w-(/G l)w,-kzvz 

+ 
v, CL??, e”” 1 

. 
w-lwc-kZv; \ 

(24) 

Next, a change of dummy summation index is made in order to write Sf in the more 
convenient form 

Invoking the Bessel summation identities, 

X 
ivIJ;(k3v~w,) Sl?, + (Iwdk,) J,(k,tJJw,) Sgy + v,J,(k,,vJw,) SE,1 

o.-lw,-kkivz j* j-w 

a closed form for the perturbed distribution function. 
The derivation proceeds with the calculation of the perturbed plasma current, 

aj = )” d3v qv @(v). 

The desired dielectric tensor for the plasma response is 
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where a” is the conductivity tensor which may be extracted from the perturbed current 
through the constitutive relationship, 

Sj = G . 6E. (31) 

For the Maxwellian equilibrium distribution function, Eq. (12), the explicit 
expression for the perturbed current is 

x 1,‘” 44 vI cos yli, + v I sin y11, + 0, I,) 

XV L 
1 [ 

iv I J; &!?, + (h,/k,) J, &??,, + v, J, h??z 

~-lco~-k,v~ I 

X e- il((.~/2)-“)ei(kyuI/Oe)~o~* 
(32) 

To illustrate the mathematical steps involved in evaluating this triple integral, it is 
sufficient to consider only one component-say Sj,. Specifically, the w integral 

-?a 
I* = 

J dty cos ye -i/((lr/2)-ru)ei(k,v~/w,)COS &J, 
(33) 

0 

is evaluated by using the identity Eq. (22) and 

J 
-2n 

dy &(‘-P)b = 27&, p (34) 
0 

to obtain 

I*=c~p kYvL 
( 1 

- e-i(l-p)cn12)(g 
p,l+ 1 + &,,- 1). 

P WC 

Then, upon summation and the use of the Bessel identity Eq. (27) 

k,v, IO= -2inJ; - . 
( ) WC 

(36) 

The x-component of the perturbed current is then given by 
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The u ,-integrations are variations of Weber’s second exponential integral 

Introducing the explicit notation, 

2 iLo 
'0 

/ i 

I;go(b) 

x dx epXz xJi(a-4 Jk) = 

[XJi(ax)12 1 

Ti,,(b) 

Ti.?(b) 
\ 

(35) 

where r ,70 = I,(b) epb, b = a2/2, and T,.,(b), f{,?(b) may be expressed in terms of 
T,,,(b), leads to 

where Vz = vz/r7, 0= (2T/m)“z. The remaining integral is related to the error 
function of imaginary argument-the well-known plasma dispersion function. Using 
the notation 

j 

SJ 

dx e-“’ --oo 

the final result for Sj may be written 

where Cr = (ccl - lw,)/k, V. The elements uXX, u,,,, and uXz may be extracted from 
Eq. (42) by inspection. The calculation of the other com:ponents of (T can be carried 
out in an analogous fashion, and Eq. (30) may be used to explicitly write the 
elements of the dielectric tensor. 

Note that even for the very simple model of a homogeneous plasma in a uniform 
magnetic field, the procedure for deriving the dielectric response of the plasma to 
perturbations is a tedious multistep process. In carrying out this procedure it was 
necessary to make multiple use of the identities, 

eiiacosO =C ~,(~)~*il((z/Z)-J3) 
(43) 



184 N. T. GLADD 

J* 
0 1 

-cGdze-i”‘=- -iw (44) 

-9 JU) =-j- J(PT 1) 
7 co-(Z+ l)o, y w-pm, (45) 

(46) 

“27l 

J 
doe i([-m)O = 27c4, (47) 

0 

.cc 
2 

! 
x dx e-“’ 

-0 

(48) 

(49) 

(50) 

More realistic equilibrium models of plasmas add greatly to the complexity and 
tedium of this procedure. 

3. SOME GENERAL ASPECTS OF THE SYMBOLIC DERIVATION 

In this section, some general aspects of the procedure by which the MACSYMA 
symbolic manipulation language may be used to duplicate the multistep derivation 
detailed in the previous section are discussed. No attempt is made to explain all of 
the MACSYMA commands invoked since that language has literally hundreds of 
commands. Detailed explanations should be sought in the MACSYMA user’s 
manual [ 11. 

To some extent, MACSYMA has an English-like structure and may be understood 
as read. In the author’s opinion, this is very deceptive for attempts to “logically” 
deviate from well-trodden paths almost always lead to difficulties which are hard to 
resolve. The frequent frustration experienced when this happens is a prime reason 
why the powerful tool of symbolic manipulation has been so slowly accepted by the 
scientific and engineering community. 

When beginning to learn MACSYMA, progress is often painfully slow (at least, in 
the author’s experience). Then, once some feeling for syntax has been obtained and a 
sufficient number of tricks have been learned, progress becomes much more rapid. 
The word “trick” is used deliberately since the act by which a procedure, which has 
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proved almost impossible to the novice, is accomplished by an expert in a few 
keystrokes has, quite seriously, been named the “Svengali” effect [ 141. 

The MACSYMA procedures utilized here are not novel. The intent is to splice 
elementary features of MACSYMA together in order to systematically attack a 
complex class of physics problems. In addition, there has been no attempt at 
optimization and every choice between elegance and clarity has been decided in favor 
of the latter. 

The task is to develop a set of MACSYMA procedures which will sequentially 
perform the mathematical operations required in the derivation detailed in the 
previous section. The essence of this task is the development of subprocedures which 
scan mathematical expressions and recognize certain patterns for which replacement 
rules exist. MACSYMA has a built-in procedure for pattern recognition-DEF- 
MATCH-but this procedure often fails if the pattern is complex or if the pattern 
which is sought is buried in a large expression. Therefore, steps must be taken to 
facilitate the pattern searching as much as possible. 

This is accomplished by adopting a standard notation for the various variables and 
parameters, by suppressing the use of explicit notation indicating summation and 
integration, and, most importantly, by breaking complicated expressions into a sum 
of terms and examining each term individually. These simplifying methods will be 
discussed first before passing to the central core of the problem-recognizing specific 
mathematical patterns and replacing them with simplifying identities. 

3.1. Standard NotatioH 

The perturbed distribution function, Si Eq. (21) has the functional dependence 

The corresponding MACSYMA notation is 

DELTAF(Q, T, FO, VPR, VPL, PSI, OMC, T, OM, K , t\ , E , E I E i 
Y z x Y 2 

(52) 

FOiNO, M, T, VPR, VPLj . (53) 

The velocity variables, VPR and VPL, are actually dimensionless: VPR = zl.:;I; 
where tT = (2T/n~)“‘~. with VTH = 5. In the course of the derivation, additional 
dimensionless variables and functions are introduced- 

a-SL’r/.j w - iw 
&= kr’ ’ 

w, ’ 
EE ZETA[r.]. 

z 

where quantities enclosed by ] ] appear as subscripts. 
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To simplify pattern searches and the appearance of expressions, the use of 
summation and integration notation is suppressed. For example, 

will appear as 

%I A COS(THETA1 %I L !%PI/Z - THETAi 
%E = J iA:) %E 

(56) 

Summation indices are L and P, and the integration variables are T, PSI, VPR, and 
VPL. 

3.2. Breaking Complicated Expressions into Parts 

To deal with the simplifying procedure of breaking a complicated expression into 
terms which may be operated on individually, recursion is chosen rather than 
iteration. In MACSYMA, the generic recursive procedure-OPERATION-which 
simplifies-EXPRESSION-is written as 

OPERATION~EXPRESSION~:=BLOCK~ 
~other_needed_local_variables 3, 
EXPRESSION:EXPAND<EXPRESSIONI, 
IF EXPRESSION-IS-SUM!EXPRESSION) 

THEN 
RETURN(OPERATIONIFIRSTrEXPRESSIONI) 

+OPERATION~RESTIEXPRESSLON))j. 

procedures_for_simplIfylng_a_single_term, 

RETURN< simplif~ed_farm_of_single_term !j; (57) 

In Eq. (57) the word BL.OCK identifies OPERATION as a separate procedure. 
EXPAND guarantees that EXPRESSION appears as a sum of terms. 
EXPRESSION-IS-SUM is a Boolean function which tests EXPRESSION to see if 
it is a single term or a sum of terms (see Appendix A). If it is a sum, then 
OPERATION is called recursively on the parts of EXPRESSION. If EXPRESSION 
is a single term, then the required simplifications are performed. Most of the 
procedures developed for the kinetic theory derivation follow the general pattern of 
Eq. (57). 

3.3. Pattern Recognition 

The key aspect of simplifying a given expression involves recognizing a 
mathematical pattern which may be replaced with a known simpler form. A generic 
MACSYMA procedure for accomplishing pattern matching could probably be 
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written, but the idea is best illustrated by a simple example. Suppose the values 
A, B, C of the expression 

AXB exp(CX), (58) 

are to be determined. The MACSYMA procedure would be 

MATCH-PATTERN(EXPRESSION):=BLOCK( 
CA,B,C,TEMPLATEI, 
tlATCH~~ECLARE~CA,B,Cl,FREEOF(X)!, 
DEFMATCH~TEMPLATE,A+X~B*EXPfC*Xj>, 
TEMPLATE(EXPRESSION), 
RETlJRN<CA,E,C3!); 

Here MATCHDECLARE ascribes the property that A, B, C be independent of X, 
DEFMATCH sets up the explicit pattern matcher-TEMPLATE-which is then 
applied to EXPRESSION. As an explicit example- 

returns 

Cl, -, - XII 
2 (60) 

In the case of more complicated patterns it is usually necessary to further decompose 
EXPRESSION in order to achieve a successful matching. 

3.4. Checking for Errors 

As will become clear in what follows, the expressions which are being manipulated 
become very long and complicated. The question naturally arises as to how to check 
their correctness. In a basic sense, the question of the correctness of intermediate 
expressions is no different than the question of the correctness of the intermediate 
numbers in a complicated numerical calculation. It is only our experience in dealing 
with humanly manageable symbolic expressions that makes us think that we should 
be able to check their correctness at every stage in the calculation. In practice, our 
typical check on correctness is to see if a given expression is consistent with its 
immediate predecessor. Emphasis should be placed on checking the correctness of the 
final expressions and, in general, the procedures used are analogous to those used in 
numerical computation. 

Some specific techniques in which the correctness of this plasma kinetic theory 
derivation was checked are as follows. First, the program was made as modular as 
possible and each module was debugged and checked independently. Second, the 
starting expressions were carefully typed, checked, and stored, once and for all, on 
disk. This eliminated the errors which could occur due to repetitive typing. Third: the 
overall procedure was checked by constructing artificially simpler starting equations 
which nevertheless contained all of the generic features required in the pattern 
matching sequence. Fourth, the entire problem treated here is, in essence: an error 
check since it may be performed analytically. If the techniques developed in solving 
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this known problem are found to yield the correct results, then great confidence is 
gained in applying this code to starting equations which are more complicated but 
involve no new generic procedures. 

In the case of problems which do not lead to known answers, then standard 
techniques of analysis could be used to check the answers. For example, limiting 
cases could be extracted and checked against known results. Another error checking 
procedure would be to solve the problem by an alternate procedure and compare the 
two results. This latter method is much more feasible in the realm of computational 
symbolic manipulation than it is in a manual calculation. The amount of time 
required to set up an alternative computational procedure for carrying out a 
calculation is usually only a small fraction of the time required to manually carry out 
a calculation. 

4. STRUCTURE OF THE SPECIFIC MACSYMA KINETIC THEORY DERIVATION 

MACSYMA is usually thought of as an interactive language whereby expressions 
are typed in and processed immediately with the operator having various options 
after each procedure. However, in this case, a complex but well-structured calculation 
is being performed and it is desirable to avoid errors associated with typing large 
expressions. Therefore, the operation is performed in a batch rnode where basic 
expressions are stored on disk files, then read in as required and sequentially 
processed. This also allows the storage of intermediate results so that if (when) 
trouble occurs it is not necessary to repeat the entire calculation. 

Arbitrarily, the calculation is divided into two stages. Stage 1 specifies the 
perturbed distribution function and evaluates the time integral. Stage 2 specifies 
which moment will be calculated and performs the three required velocity integrals. 
These stages are schematically represented in Figs. 1 and 2. To illustrate the 
symbolic derivation, the steps involved are shown for a simplified expression. 
Specifically, only the 6E, component of Sf 

dr v-i e iky(y’--4.)+ik,(z’-;)--iwT 
(61) 

is considered. Having performed this integral in Stage 1, Stage 2 is illustrated by 
considering only the j, moment of Sf, 

Sj.,, = . d3 v v, dJy. 
I (62) 
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This is equivalent to calculating only the element (T,,~ of the conductivity tensor. The 
explicit statements of Stage 1 (see Fig. 1) are 

Each of the statements is now discussed in turn. 

SATCHLOADiCPAPER,FCNSli; 

STAGE 1 

e Substitution 

I Change Dummy Indices 
To Obtain Common Denominator I 

I Use Bessel Identities to Reduce 
All Indices to Order E 

(63) 

FIG. 1. Stage l-Performing the orbit integral. 

581!56!2-2 
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This “quietly” loads the various functions which will be needed, that is, without 
explicitly displaying those functions. Each function is shown and discussed in 
Appendix A. 

BATCHIPAPER,DELFj; (644 

This loads the expressions for a$ 

vCz3:vthxvplb (64b) 

This forms the expression Sf; above. The expression must be evaluated-EV-twice 
in order to force substitutions for various subquantities in DELTAF to be made. 

%I tOMC T + PSI) - %I (OMC T + PSI) 
FO 4 (XE + %E ) VPR VTH 

%I (COS<OMC T + PSI) - COS!PSIj! VPR VTH K 
Y 

%I T VPL VTH K - ---- 
Z 

XE 
OMC 

%1 Oh T 

/(2 TMP) (65b) 

As it stands, this MACSYMA output is rather difficult to read. The confusion arises 
from the fact there is no explicit indication that the first line (ending with VPR VTH) 
is to multiply the second line (starting with NE). This is because multiplication is 
implicitly indicated in MACSYMA output while other operations are explicitly 
indicated. The reader should be wary of this inconsistency with “normal” 
mathematical expressions in reading the formulae to follow. 

This function implements the identity Eq. (22). Simplifying substitutions are then 
made before displaying the result. 
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J (AVPR) FO Q VPR VTH EXPTtXE, (%I ONC ? VPL VTH h 
L 2 

2 
+ %I A OMC COSIPSI~ VPR + i%I OMC - %I OM OMC! T + %I OMC PSI,/Ot+C 

%PI 
- %I L (- OMC T - PSI + ---))/I? TMP) + J (AVPR) FO Q VPR VTH 

2 L 

EXPT(%E, (%I OKC T VPL VTH K + %I A OMC COSiPSI! VPR 
z 

2 %?I 
+ (- %I OMC - %I OM OMC) T - %I OMC PSIj/OMC - XI L (- O?lC T - PSI + ---I, 

,! 

/(Z TMP, 

(66b) 

This expression illustrates why only a single term in @is displayed. The phenomenon 
is called “intermediate expression swell” and is a serious problem in symbolic 
manipulations. 

DELTAFX3:TAUINTEGRATION(DELTA’XZ,Tj; (67a) 

This function carries out the time integration. 

2 %I A COS(PSI) VPR + (2 %I L + 2 XI) PSI - %I %PI L 
---------------------------------------------------- 

2 
.I (AVPR) FO Q VPR %E VTd 

2 TMP (XI VPL VTH K + (XI L + %I) OMC - %I OMi 
z 

2 %I A COS(PS.1) VPR + (2 %I L - 2 %I> PSI - %I %PI I 

2 
+ .I iAVPRl FO Q VPR XE 
VTH/ (2 IMP (%I VPL VTH K + (%I L - x1) 0fiC - XI On>) 

Z (67b; 

DELTAFX4:MAKE-COT’-DENOMLDELlnFX3,P)I 
DELTAFX4:SUBST(CP=L3,DELTAFX4); 
DELTAFX4:FACTOR(DELTAFX4); 

This function changes the dummy summation index in order to form a common 
denominator for the two terms. The result is then simplified further before presen- 
tation. 

- (J iAVPRj - J (AVPR), FO Q VPR 
L + 1 L-l 

XI %PI L 
%I A COS<PSI> VPR + %I L PSI - -------- 

i 
XE VTH 

/(2 TMP CVPL VTH K + L one - Oilf) 
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DELTAFXS:SIMPLIFY-JBES-COMBOS<DELTAFX4,3>; 
DELTAFX5:FACTOR(DELTAFX5>; 

This function evokes the Bessel identities in Eqs. (26) and (27) to reduce the order of 
the Bessel functions, 

%I %PI L 
%I A COSiPSIi VPR + %I L PSI - -------- 

d 2 
I----- (3 (AVPR))) FO Q VPR ‘YE VTh 

dAVPR L 

TMP <VPL VTH K + L OMC - OH> 
2 

(69b) 

and forms the final Stage 1 expression. This expression should be compared with the 
coefficient of 6E, in Eq. (28). 

STRINGOUT(CPAPER,RSTAGl3,%j: (W 

This function saves the last result to disk. 
The explicit statements of Stage 2 (see Fig. 2), which perform the velocity integrals 

BATCHLOAD(CPAPER,FCN53); 
BATCHIPAPER,RSTAGl); 
DELTAFX:%TH(2); 
DELTAJX:Q+VTH*VPR*~1/2)*o+EXP~%I*PSI~+EXP~-%I*PSI~~*DELTAFX; 
DELTAJX:VTH^3*VPR*DELTAJX: 

DELTAJX4:VPR_INTEGRATION[DELTAJX3); 
DELTAJXS:VPL-INTEGRATIONO; 
STRINGOUT(CPAPER,RSTAG23,%); 

These statements are now discussed in detail. 

BATCHLOAD(CPAPER 
BATCH(PAPER,RSTA 
DELTAFX:%TH(ZI; 

FCNS3) ; 
I>; 

These commands load the library of procedures detailed in Appendix A, load the 
results of the Stage 1 calculation, and assign the name DELTAFX to that result. The 
cryptic command ?bTH(2) means: take the expression two lines back. BATCH 

(714 

command leaves a message as its last line and this must be avoided. 

%I %PI L 
%I A COStPSIj VPR + %I L PSI - -------- 

d 2 
(----- iJ (AVPRjj) FO Q VPR %E VTh 

dAVPR L 

TMP <VPL VTH K + L OMC - OM> 
z Vlb) 
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I Simplify th? Bessel Function 
Cmbinations 

FIG. 2. Stage 2-Performing the moment integrals. 

DELTAJX:QrVTH+VPR~il/2j*o+EXP~%I~FSI~+EXP~-%l~PSI~~*DELTAFX~ 
DELTAJX:VTH*3*VPR*DELTAJX; (72a) 

The first command sets up the jr moment of (sf,, i.e., qr%,,,,, Sf, = qL’cL cos r,u 8JY; cos w 
is written in exponential form, anticipating that integrals of the form 1 dv eiC’ are to 
be performed. The second command completes the specification of the integrand. 
Recall the integration is being performed in cylindrical coordinates, with dimen- 
sionless variables like ~1~ = VPR*VTH, and usual integration notation If: dx is being 
suppressed. 

d %I PSI - %I Pil ; 3 
(----- (J cAVPR)jj FO c%E + %E j 9 ‘VPR 

dAVPR L 

%I XPI L 
%I A COSIPSI) VPR + %I L PSI - -------- 

2 
%E 

/(2 TMP (VPL VTH K + L OMC - ON)) 
Z (72bj 
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This command invokes the identity, Eq. (22), 

d 
J (AVPR) <----- iJ (AVPR))) FO 

P dAVPR L 

(2 %I L + 2 %I) PSI - %I XPI L _-_____----------------------- + %I p ispI, - PSI, 
2 2 3 5 

%E Q VPR VTH 

/(2 THP VPL VTH K + 2 L OHC TMP - 2 OH TMP) 
2 

d 
+ J (AVPR) (----- (J (AVPR))) FO EXPT(%E, 

P dAVPR L 

(2 %I L - 2 %I) PSI - %I XPI L XPI 2 3 5 
--_--------____--_____________ + %I p (--- - PSI)) Q VPR VTH 

2 2 

/(2 TMP VPL VTH K + 2 L OMC TMP - 2 OM TMPj 
2 

(73b) 

DELTAJX3:PSI_INTEGRATION(DELTAJX2,PSI,P>; (744 

This command performs two functions: (a) it performs the v integration obtaining, in 
this case, the delta functions a,,,,, and (b) it performs the P summation over these 
delta functions. 

d 2 3 5 
2 %I %PI J !AVPRj i----- iJ (AVPR))> FO Q VPR VTH 

L + 1 dAVPR L 

2 THP VPL VTH K + 2 L OMC TMP - 2 ON TMP 
2 

d 2 3 5 
2 %I %PI J (AVPR) c----- iJ (AVPRjjj FO Q VPR VTH 

L - 1 dAVPR L 
-___----- 

2 TMP VPL VTH K + 2 L OMC TMP - i OH TMP 
1 

The order of the Bessel functions is again reduced. 

d 2 2 3 5 
2 %I %PI i----- (J (AVPR),, FO Q VPR VTH 

dAVPR L 
__------- 

TMP VPL VTH K + L OMC TMP - OM TMP 
z (75b) 
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FO:N0+(1/~%PIjj~~3/2)xil/VTH”3)1EXPi-VPR-2-VPL~2J~ (76aj 

This introduces an explicit form for the equilibrium distribution functions. This 
substitution is made as late in the calculation as possible to reduce the size of the 
expressions which must be used in previous manipulations. 

2 2 
- VPR - VPL 

NO XE 
_----------------- 

312 3 
%PI VTH 

(76h) 

A series of substitutions are required here because of the inability of MACSYMA to 
deal with derivatives with respect to functions. 

2 2 
d 2 2 3 - VPR - VPL 2 

2 %I %PI (----- (J (AVPRlll NO Q VPR XE VTH 
dAVPR L 

(77%) 
312 

XPI (TMP VPL VTH K + L OMC TMP - OM TMPi 
Z 

(7Xa? 

This performs the c, integration. The method used for this integration is different 
than that used for previous integrations-see Appendix A for details. 

2 
A 2 2 

%I GAM (--I NO Q VTH 
L, 2 2 

2 2 

VPL VPL 
SQRT(%PI) (TMP VPL XE VTH K + (L OHC - OH) THP %E ) 

Z 

C-b 1 

DELTAJXS:VPL~INTEGRATION~DELTAJX~j; (79aj 

This performs the v, integration and finishes the calculation. Compare with Eq. (42) 
[TMP=MVTH^2/2]. 

2 
A 2 i OMC - OH 

%I GAM i--j NO Q VTH ZFCN <- ----------j 

L, 2 2 ? VTH K 
z 

THP ii 
Z 

STRINGOUT(CPAPER,RSTAG21,%1; 

(790 j 

This stores the result to disk. 
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5. SUMMARY AND DISCUSSION 

In the preceding, techniques of symbolic manipulation using MACSYMA have 
been applied to the complicated multistep derivations which characterize the kinetic 
theory of plasma stability and wave propagation analyses. The analytical derivation 
of a classic problem in plasma kinetic theory-the dielectric response of a warm, 
homogeneous strongly magnetized plasma to small perturbations-was reviewed and 
mathematical procedures involved in this derivation were summarized. Next, a 
general framework was discussed through which the complicated expressions which 
characterized the derivation could be simplified to the point where the pattern 
matching facilities currently available in MACSYMA could be used. Next, the 
sequence of MACSYMA procedures which duplicated the analytical derivation were 
detailed with a restriction, for reasons of compactness to a single representative term 
of the general 3 X 3 dielectric. Finally, in an Appendix, the actual procedures which 
were used to match mathematical patterns and replace them with simplifying iden- 
tities were listed and discussed. 

This work was undertaken as a learning experience for the author and as a prelude 
to attacking the derivations expected in developing a kinetic theory of stability and 
wave propagation in the confinement geometry Elmo Bumpy Torus [lo]. 

There are numerous ways in which the methodology presented here can be 
extended. In point of fact, the problem explicitly treated here is only a prototype of a 
kinetic theory derivation. There are two general ways in which such derivations 
become more complex. First is the inclusion of more plasma geometry and physical 
effects within the context of the linear perturbation theory. Second is the extension of 
the perturbation theory to higher order, thus entering the realm of nonlinear physics. 
Both of these avenues have been extensively explored in the past twenty years and 
there remains much to be done. A major obstacle in these analyses is the same one 
which is amply illustrated in the prototype derivation presented here-an enormous 
amount of tedious calculation is required to reach the expressions which serve as the 
effective starting point of an analysis of interest. 

In the case of linear calculations, the complicating factors come in various forms. 
The inclusion of more geometry increases the complexity of the equilibrium 
distribution function about which the perturbation theory is built. This means many 
more terms in the starting expressions and also introduces terms requiring much more 
complex pattern matching than was required by the prototypical calculation 
presented here. The fields associated with complex geometry also greatly complicate 
the orbits of the plasma particles. In general, these complicated orbits may not be 
written in closed form and perturbation theories must be developed to approximate 
them by forms which make further calculation tractable. If multiple plasma species 
are present, the number of terms in a calculation can balloon rapidly. Furthermore, 
the approximate techniques used to treat the different species are often quite different. 
If the species interact through collisions, then the basic equation for the evolution of 
the distribution function becomes inhomogeneous. In this case, it is usually necessary 
to solve the equation for the starting equilibrium distribution function by some pertur- 
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bative technique in order to proceed analytically. A basic feature of “realistic’” 
plasma stability calculations is the presence of several nested perturbation 
calculations within the basic derivation. Indeed, the final dispersion equation. once 
obtained, is itself typically solved by multiple perturbation schemes. There are many 
opportunities to automate the straightforward but tedious aspects of these 
calculations. 

The extension of the perturbation theory to higher order-the so-called ‘“weak 
turbulencen approach-can lead to an enormous explosion of the number of terms 
Physical and geometrical approximations are usually introduced at a very eariy stage 
in the derivation in order to cull these terms. Frequently, strong restrictions on the 
frequency and wave number spectrum to be examined have to be introduced in order 
to proceed. Furthermore, there exist various ways of truncating the hierarchiai 
expansion and these can lead to quite different results. In some cases, the leading 
terms in the theory are chosen in an almost hueristic fashion There is much to be 
done in the way of systematic examinations of these nonlinear theories but 
researchers are deterred by the monumental algebraic requirements of such analyses. 
Computational symbolic manipulation makes the systematic examination of some 
nonlinear systems quite feasible. 

In a more far-reaching sense, it would be of considerable interest to attempt to 
couple the techniques of computational symbolic manipulation with the heuristic 
techniques of artificial intelligence in order to mimic the operational procedures of 
“expert” plasma theorists in performing these perturbation calculations. The 
methodologies used by these experts can be quite subtle but they are not numerous. 
In point of fact, the requisite knowledge domain is probably relative narrow, 
consisting of a procedural knowledge of a few perturbation techniques of applied 
mathematics, knowledge of a modest number of identities relating special functions 
and the specification of some heuristics indicating the techniques to apply in different 
situations. The goal is always the same-a “simple” dispersion equation-and the 
starting point is always the same set of equations. Expert systems have been 
developed in the much more knowledge-rich domains of medicine and geology. 

APPENDIX A: DISCUSSION OF MACSYMA PROCEDURES 

In this Appendix, the various MACSYMA procedures, which have been developed 
to perform explicit tasks in kinetic theory derivations are discribed. 

expcession_is_sum(expression):=block( 
if not atom<expression) and partiexpression,C)="+" 

then 
return<true> 

else 
return(fal5e)l; 

This procedure tests EXPRESSION to see if it is a sum or a single term. 
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exp_tris_to_besiexpressian,ars,tri4_fon,be~-indexj:=blocki 
Ca,b,c,sign,phase,continue,exptris_template~, 
expression:expandiexpression), 
if expression_is_sumiexpression) 

then 
returniexp_tris_to_be5ifirst~exp~ession),ar5,tris-fon,bes-index) 

+exp_tris_to_besIrest(expresaionj,ars,tris_fon,bes_index)j, 
matchdeclareiCa,b,cl,freeof(tris)!, 
natchdeclareiars,truej, 
defmatoh~exptris_template,ciexp(a+tris_fon+b~,ars), 
exptris_templateiexpeession,~~sj, 
a:-%i*a, 
if not atom(a) and partia,OI=“-” 

then 
sign:-1 

else 
sign:l, 

if tris_fon=sinlar5j 
then 

phase:ars 
else 

phase:%pi/Z-ars, 
returnlc*expib)*jCbe~-indexl~sign*aj 

+expi%i+sign*bes_indexrphase))); (AZ) 

This is a pattern matching routine of the general form discussed in Section 3. It 
invokes the identity Eq. (22). 

tau_integratlon~expressian,varl:=blacki 
ta,b,c,expvar_templatel, 
expression:expand~expression,, 
if expression_is_sumiexpression) 

tnen 
return(tau_integration(first(expression~,var) 

+tau_integratlonirest~exp~essionj,var)j, 

matchdeclareivar,true), 
matchdeclareiCa,b,cl,freeofivar~?, 
defmatch~expvar_template,c*exp~a*var+b~,var), 
expvar_templateiexpression,varj, 
returnic*expCbi/a!l; 

This routine performs integrations of the form Eq. (23). 

make_cam_denom(expression,nex_indexj:=block~ 
Cwork,coef~omc,coef~l,soln~for~l,iduml, 
expressian:expandiexpression), 
if expression_is_sum(expression) 

then 
returnlmake_com_denonlfirsto,new_index) 

+make_com_denomirert(expressionj,new_index)j, 

work:denoaiexpression), 
for idum 

while 
hipowiwork,omcI>l 

do 
work:ratsimpiwork/omc), 

coef-onc:ooeffiexpandiworkj,omc,lj, 
chef-l:coeffCexpandicoef-omc),l,l), 
if coef-1 # 1 

then 
coef~omc:coef~omc/coef_l, 

soln~for~l:solveicoef_omc_new_index,lj, 
soln~for~l:firstisoln~for~l>, 
returnisubstisoln_for_l,expression)jjj; 

(A3) 

(A4) 
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This routine changes the dummy summation index 1 so as to achieve a common 
denominator of the form (W - Iw, - kZuz). It duplicates the procedure which 
transforms Eq. (24) into Eq. (25). As written, it is somewhat more general than 
needed for the explicit example treated in this paper. Specifically, the DO loop acts to 
remove common multipliers OMC which may be in the denominator of 
EXPRESSION and will confuse the search for the coefficient of OMC in the pattern 
OM-(. . .)OMC-KZXVTH*VPL. 

SIMPLIFY-JBES-COMBOSiEXPR,ITERj:=BLOCKi 
CLIST~OF~INDICES,MAX_INDEX,MIN_INDEX,MIN~INDEX,COE~,SSUM,~~~~IF~ 
RULELIST,SUtlRULE,DIFRULE~, 
ITER: ITER+l , 
IF ITER ., 5 

THEN 
ERRORCTOO-MANY-ITERATIONS), 

EXPR:EXPANDCEXPR), 
LIST-OF-INDICES:MAKE_LISI_OF_INDICES(EXPR~, 
MAX-INDEX:APPLYitlAX,LIST_OF_INDICESj, 
MIN-INDEX:APPLYCMIN,LIST_OF_INDICES~, 
IF MAX-INDEX = L 

THEN 
RETURNCEXPR). 

COEFCMAX-INDEX3:COEFF(EXPR,JCnAX_INDEXS~ARG~~, 
COEFCHIN-INDEX3:COEFFCEXPR,JCMIN_LNDEX~~ARG~~, 
SSUM:RATSINPC1/2*CCOEFtMAX~IN~~EX~+COEF~MIN~INDEXl~~, 
DDIF:RATSIMPC1/2+CCOEFCMAX_INDEX~-COEFtMIN~INDE~~~~, 
RULELIST:BES-SUB-RULESCHAX-INDEX), 
SUMRULE:FIRSTCRULELIST), 
OIFRULE:FIRST~RESTCRULELIST~~, 
EXPR:EXPR+SSUM+SUMRULE+DDIF*DIFRULE, 
EXPR:SUBSTCLJCMAX-INDEXSCARG) = 0, 
JCMIN-INDEXlCARG) = OJ,EXPR>, 
SIMPLIFY-JSES-COMBOS(EXPR,ITER))B (A5 li 

This procedure simplifies combinations of Bessel function sums and differences so as 
to reduce the order of all Bessel functions to L. It is also more general than is needed 
for our example and is designed to handle the complex combinations which occur in 
more realistic problems. Basically, it replaces the combination J,,,, k J,-, with lower 
order quantities. It invokes the procedures. MAKE-LIST-OF-INDICES, 
GRAB INDEX, and BES-SUB -RULES. 

MAKE-LIST-OF-INDICESO:=BLOCK~ 
[LIST-OF-INDICES,I,IMAX,WORK,INDEX,7 
LIST_OF_INDICES:C3, 
EXPR:EXPANDCEXPR), 
IHAX:LENGTH(EXPR), 
FOR I THRU IMAX DO 

iIF PARTCEXPR,O> = I’+” 
THEN 
CWORK:FIRSTCEXPR), 

EXPR:RESTCEXPR)) 
ELSE WORK:EXPR, 

INDEX:GRAB-INDEXCWORkl, 
IF NOT MEMEERCINDEX,LIST-OF-INDICES> 

THEN 
LIST-OF-INDICES:CONSIINDEX,LIST~OF~INDICES~, 

RETURNCLIST-OF-INDICES),; 
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This procedures passes EXPRESSION and makes a list of all the Bessel indices 
appearing in it. 

GRAB-INDEX<EXPRI:=BLOCK( 
CA,INDEXJ, 
HATCHDECLAREfCA,INDEXl,FREEOF~ARG~~, 
DEFtlATCHfJMATCH,A*JCINDEXl~ARG~~, 
JHATCH(EXPR), 
IF FREEOF(L,INDEX) 

THEN 
RETURN(L) 

ELSE 
RETURNfINDEX)); (A7) 

This procedure is invoked by MAKE-LIST-OF-INDICES. It determines the index 
of the Bessel function appearing in an expression. 

BES-SUB-RULES(INDEX,:=ELOCh( 
CNJ, 
IF INDEX = L+l 

THEN RETURNit2*L/ARG+JCLl(ARG,, -Z*[lIFF!JCL~(ARGj,ARGjlj 

ELSE 
(N:INDEX-L, 
RETURN([-rJ[L+N-Z~iARG)+JCL-N+2~~ARG~)+2*~L+N-l~/ARG*JtL+N-l3(ARGj+2~[L-N+ 

lj/ARG+JCL-N+1ltARG~,-~JCLrN-2l~ARGj-JCL-N+2l~ARG~~ +2+lL+N-l)/ARG+JCL+N-13iARG) 

-2*(L-N+1)/ARGtJCL-N+ll<ARG)l>1)$ 

WI 
This procedure provides the Bessel substitution rules 

J1+1 +JI-l =;Jdx); I* 1, 

J 1+ I -JI-, = -2,J’(x); I+ 1, 

J ~+n f JI-, = 4Jl+n-2 f J,-nt?) + 2”,f n, J,,n+l 

* 2(/-n) J 
I-Pl+l; 1 f n, 

x 

when evoked by SIMPLIFY -JBES-COMBOS. 

pei_integration~expression,vac,bes_indexj:=b~ockt 
Caa,b,c,expvar_template,~uIn-for-bes-index~, 
expression:expandlexpressionj, 
if expression_is_sum(expression) 

then 
return~psi_integration(first(expression),var,bes-index} 

+psi_integration(rest(expressionj,va~,bes-indexjj, 

matchdeclare(var,true), 
matchdeclare(Caa,b,c3,freeof(var)), 
defmatch(expvar_template,c+exp(aarvar+b),varj, 
expvar_template(expressinn,va~), 
soln_for_bes_index:solve(aa,bes_index), 
soln_for_bes_index:first(soln_for_bes_indexj, 
return(subst(soln_for_bes_index,2+Xpiic+exp~b))jj; 

(A9) 

(A101 

(All) 
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This procedure performs the integration 
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and then performs the sum over the implied summation index P. invoking the 
Kronecker-6 as required. 

vpr_rntegratianiexpressionj:=block( 
Cterml,term2,test,eub,num tests,com_term,work,work2i, 
expression:expandiexpressTon,, 
if expression_is_sumiexpression! 

then 
returnivpr_integration(firstlexpresslon!~ 

+vpr_integ~atlon~rest(ex~~essio~jj~, 

ternl:jCl7iavpr), term2:vpr*diffijCl~iavpr),avprj, 
testCl~:tecml^i subCl~:gamLi,O~~a’ii2)/i, 
testt23:term1*t:ra2, subC23:gamCl,l~~a-2;2~~2, 
testC3I:term2~2, subC3l:gamtl,Z~ia‘2/Z!li, 
num_tests:3, 
corn-term:vpf*expi-vpr*2j, 
work:ratsinpiexpressionlcom_term), 
for i:l thru "urn-tests do 

iwork2:ratsimp(work/te5tti~), 
if freeofivpr,work2j 

then 
iwork2:work2*subCi7, i:num-tests)‘, 

returniwork2jj; (A131 

This procedure performs the VPR integration. It illustrates a different method of 
performing the integration. Rather than attempting a pattern match, it simply trys a 
sequence of substitution rules. This is quite practical in the case where it is known 
that the integrand must be one or another of a few related forms 

vpl_integration(expression):=block( 
Caa,bb,cc,nn,wo~k,num_work,den_work,de~~-wo~k,cam-te~-~, 

linear~template,poly_tempfatemp~atel, 
expression:expandIexpression), 
if expression_is_sumiexpression, 

then 
return~vpl_lntegratloncfirst(expressionl~ 

+vpl_integrationicestiexpressronj,,, 

com_term:expi-vpl^Z), 
work:ratsimpiexpresaion/com-term), 
num-work:numiwork), 
den_work:denoaiwavk), 
matchdeclareiCaa,bb,cc,nn~,free~fivpl,), 
defmatchillnear-template,aa*vpl+bbj, 
defmatchipoly-template,cc*vpl~nn~, 
linear-templateiden-work), 
poly-templateinum-work), 
returniratsimpicc/aa)*sqrti%pi)*zfcntnn+l~i~a,tsimpi-bb/aa)))~~ CA141 

This procedure performs the VPL integration. It illustrates the method of matching a 
complex pattern by removing a common factor, and then matching separately on the 
numerator and the denominator. 
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